專題指導	郭啟全	研究室與分	档	養械館 205-2
				分機:5105
老師姓名		機號碼		7 7
	高冷卻效率之快速模具開發與	預定招收之學	生人數	2-4 人
專題名稱	應用			

專題簡略構想與內容 (研究動機及研究方向):

快速模具技術之特色為可以在低製作成本條件下,快速製作具有順形冷卻水路之模具,由於快速模具之材質與冷卻介質會影響射出成型品之冷卻時間。因此,本專題將以商業金屬樹脂以及環氧樹脂添加三種不同粒徑之不鏽鋼粉(stainless powder)、鋁粉(Al powder)以及銅粉(Cu powder)製作十副模具,運用冷氣流(cold stream)、冷卻液(water)、壓縮空氣(compressed gas)與含微奈米氣泡(water with ultrafine bubble)冷卻液等四種冷卻介質(cooling medium),改變不同冷卻液溫度(coolant temperature)、冷卻液流量(coolant flow rate)、壓縮空氣壓力、含微奈米氣泡不同冷卻液溫度以及含微奈米氣泡不同冷卻液流量與不同冷氣流溫度等六種不同冷卻方式來研究快速模具之冷卻效率(cooling performance)。本專題主要目標在於開發高冷卻效率之快速模具與應用。

本專題規劃之進度(時程)與目標〔是否參加校外比賽或申請國科會與一般產學研究計劃〕:

- 1. 研究成果可參與校外專題競賽。
- 2. 研究成果可參與研討會發表。

預計參加全國技專校院專題製作競賽、旭泰科技論文競賽、3D 量測應用技術大賽、臺灣國際創新發明暨設計競賽或國際創新發明競賽比賽。

此專題所需之專長或特定能力:

- 1.對此題目有興趣的學生。
- 2.對動手實作有興趣的學生。

備註:

經 年 月 日課程委員會審議通過

專題指導	郭啟全	研究室與分	機	機館 205-2
老師姓名		機號碼		分機:5105
	整合雷射與 CNC 車床於生醫材 料接合技術之開發與應用	預定招收之學	:生人數	2-4 人

專題簡略構想與內容 (研究動機及研究方向):

旋轉摩擦銲接(rotary friction welding, RFW)是指利用兩個銲接件相互轉動摩擦所產生摩擦熱,產生熔化再經加壓以及冷卻,使兩個銲接件結合(joint)一起之方法。聚乳酸(polylactic acid, PLA)含玻璃纖維(carbon fiber, CF)與聚乳酸含碳纖維(carbon fiber, CF)具有不一樣之流變性質(rheological property)。摩擦銲接(Friction Welding, FRW) 是運用銲接件之間相互摩擦所生成之摩擦熱,使摩擦面受熱熔融,經過施加壓力與冷卻後,即可使銲接件連接一起之方法。本專題主要目標在運用 CNC 車床於旋轉摩擦銲接之研究與分析。

本專題規劃之進度(時程)與目標〔是否參加校外比賽或申請國科會與一般產學研究計劃〕:

- 1. 研究成果可參與校外專題競賽。
- 2. 研究成果可參與研討會發表。

預計參加全國技專校院專題製作競賽、旭泰科技論文競賽、3D 量測應用技術大賽、臺灣國際創新發明暨設計競賽或國際創新發明競賽比賽。

此專題所需之專長或特定能力:

- 1.對此題目有興趣的學生。
- 2.對動手實作有興趣的學生。

備註:

經 年 月 日課程委員會審議通過

			 	
	鄭春德		模	₿ B10
專題指導 老師姓名		研究室與 分機號碼	091727	76176/5117
30.17.22.2		- 24 1/24 8/10 1/4		
專題名稱	金屬材料金相觀察與分析		 定招收 生人數	3 人

|專題簡略構想與內容(研究動機及研究方向):

- 製作鑄鐵、碳鋼、工具鋼、模具鋼、合金鋼、鈦合金、不鏽鋼、高溫鋼、及超合金之光 學顯微鏡金相觀察。
- 2. 各材質顯微組織之微維氏硬度測試與掃描式電鏡之觀察。
- 3. 藉由金屬材料微組織之形成原理與過程,解釋機械元件之製造過程與缺陷。

本專題規劃之進度(時程)與目標 [是否參加校外比賽或申請科技部與一般產學研究計畫]:

- 材料元件取得:FC600、S45C、SKH9、NAK80、SNCM440、Ti6Al4V、H800、P9、SUS430、SUS316、INCONL718----等材之取得判定與分類。
- 金相製作程序與技巧:切割、鑲埋、研磨、拋光、腐蝕等光學顯微鏡與掃描式電子顯微鏡之試片製作技巧。
- 顯微機械性質與顯微組織關係之建立:經由微維氏硬度測試與金相觀察,解釋各材各顯微 組織之形成機制。

預計參加 比賽

此專題所需之專長、特定能力或修過課程

對金屬材料有興趣者即可參加

備註:

請主管填後回傳即可

	鄭春徳		档	₹ B10
專題指導 老師姓名		研究室與 分機號碼	091727	6176/5117
3		74 102 WG WG		
專題名稱	電腦輔助塑膠模具設計與製作		預定招收 學生人數	3 人

專題簡略構想與內容(研究動機及研究方向):

- 1. 以成品繪製、開模圖、工程圖、數控加工程式設計等過程建立雙板或三板模之製程。
- 經由傳統車床、銑床、磨床、鉗工,及數控切削中心、數控線切割機進行模具元件之加工組立。
- 3. 射出機操作試模射出成品。
- 4. 成品之樣式未定。

本專題規劃之進度(時程)與目標 [是否參加校外比賽或申請科技部與一般產學研究計畫]:

- 以 CREO 軟體進行成品設計,模穴建立,模仁幾何公差與尺寸公差限定後出工程圖,再 經由 CREO 之加工模擬生成加工所需之 NC 碼。
- 2. 以模流分析軟體 MODEX 或 CREO 內之模流分析功能,進行分析,確定射出之條件。
- 3. 模具各零件,除規格品外,均自行以傳統與數控機進行製作並組立。
- 4. 組模精修後上機試模。依模流分析之壓力、溫度、時間進行試模,製出塑膠樣品。
- 5. 成品形式功能依現場討論而定,膠料以 PP、PE或 ABS 為主。

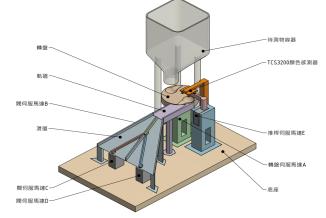
預計參加 比賽

此專題所需之專長、特定能力或修過課程

工讀有數控加工經驗者尤佳

備註:

請主管填後回傳即可


	14 - 11 - 12 - 12 - 12 - 12 - 12 - 12 -	1 /20 1	 <u> </u>	710 8	
	鍾永強		322 室/5128		
專題指導 老師姓名		研究室與 分機號碼	B212/5144		
七叶红石		74 102 300 113			
專題名稱	自動顏色分類機		預定招收學生人數	3 (2~4 人為 1 組)	

專題簡略構想與內容(研究動機及研究方向):

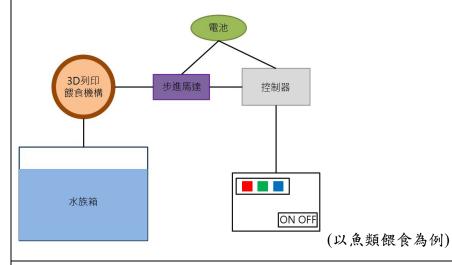
透過自動顏色分類機能夠自動判斷物品顏色並進行分類,從大量待測物中自動落下以一件物品,並辨識其顏色後,傳送至對應的位置,其中應 Arduino UNOR3、TCS3200 等電子元件,完成辨識並分類的工作。

研究目標:

- (a) 環境光源對辨識結果之影響
- (b) 待測物材質對辨識結果之影響
- (c) 待測物尺寸對辨識結果之影響

本專題規劃之進度(時程)與目標 [是否參加校外比賽或申請科技部與一般產學研究計畫]:

預計參加 比賽


此專題所需之專長、特定能力或修過課程

備註:

ſ					,	
專題指導 老師姓名	鍾永強		322 室/5128			
		研究室與 分機號碼		B21	12/5144	
	老叶红儿		74 102 300 113			
***	專題名稱	定時自動餵食器			預定招收 學生人數	3 (超過3人請說明)

專題簡略構想與內容 (研究動機及研究方向):

在日常生活中人們愈來愈嚮往方便性以及創意性,本專題利用 3D 列印機列印出可活動之餵食機構,並結合步進馬達可使此機構以固定角速率轉動,並以 IC 晶片寫入程式,加入 LED 跑馬燈、控制鍵盤、電阻電容,焊接於萬用電路板完成控制器模組,以達到可自動定時與固定數量餵食之目的。

本專題規劃之進度(時程)與目標 [是否參加校外比賽或申請科技部與一般產學研究計畫]:

無

預計參加 比賽

此專題所需之專長、特定能力或修過課程

- 1. 稍為熟悉 IC 晶片程式撰寫。
- 2. 稍為瞭解機構運作方式。

備註:

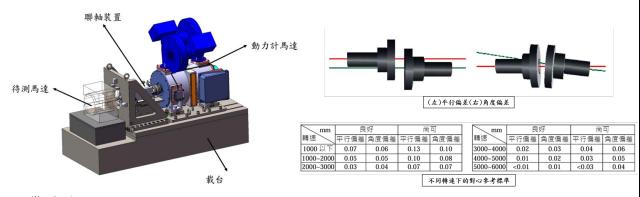
經 年 月 日課程委員會審議通過

	明志科技大學機械工程系 113	學年度專	題製	作計畫構	想書
	蔡習訓			機	₹ 318
專題指導		研究室與	512	24 , hhtsai@	mail.mcut.edu.tw
老師姓名		分機號碼			
				預定招收	
專題名稱	刮痧板之塑膠射出成	型		學生人數	2~3
				1 1/4	
專題簡略構想	想與內容 (研究動機及研究方向):				
	軟體 CREO 進行刮痧板之設計,並透透				•
	莫擬分析後的結果判斷於設計上是否				•
計變更,包含	合冷卻水路設計等皆可於軟體內即時	持規畫修正	,減り	少以往須待	實際開模時才進行
修改之修模字	欠數,進而減少成品修模成本即試權	莫所需耗費!	的時	間,使得成	品開模順利進行,
於產品設計_	上需考量成品功能、外觀、尺寸、內	7厚與收縮	效應	、材料特性	、脫模斜度等,皆
屬於產品設言	計之範疇,透過模流分析可即時預 測	則,成品填充	充時:	之熔膠於模	穴內之填充情形,
設計上是否何	會產生短射、包封之缺陷以至於成品	品無法順利 ³	填充	完成,在模	流分析階段便可將
材料特性考	量進分析內,對射出參數進行調整,	再開模前位	便可	派取合適的	射出時間、保壓時
間、冷卻時月	間,以及提前預測開模後之成品尺~	寸變化。			
本專題規劃之		外比賽或申	請科	技部與一般	· 设產學研究計畫]:
113年10月	模具製作及模流分析				
113年12月	模具製作				
114年01月	試模				
114年03月	尺寸驗證				
114年04月	完成專題報告				
リキエンチ	, 5 - 4 - 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				
	之專長、特定能力或修過課程				
	關 CAD 課程及格				
已修習模具言	设計與製造課程				
備註:					

	蔡習訓			楼	₹ 318	
專題指導		研究室與	512	5124 , hhtsai@mail.mcut.edu.tw		
老師姓名		分機號碼				
				J- J- 14		
專題名稱	燃氣電廠廢熱回收鍋爐爐管	劣化分析		預定招收學生人數	2	
專題簡略構想	想與內容(研究動機及研究方向):					
高鎳合金	仓之爐管長時間的高溫環境,會使往	导爐管性質.	劣化	,切片分析	進行金相觀測,獲	
得不同使用日	寺間的劣化趨勢,便於建立備品購置	置時間及爐,	管更	换時程設置	,有助於汽電共生	
電廠的成本技	投入及運轉安全。					
太專題規劃之		外比赛或申	 請科	- - 技部與一部	日產學研究計書]:	
	切片金相製作	170 9 50 1	*71 11		(注 1 770年 三 7	
113年12月						
114年01月:						
114年03月	•					
	完成專題報告					
, , ,	, c., c. i.e. i					
此專題所需之	 と專長、特定能力或修過課程					
備註:						
經 113 年 月	月 日課程委員會審議通過					
		-		· · · · · ·		

	明志科技大學機械工程系 113	3 學年度專	題集	製作計畫構	想書
	劉秋霖			機 21	7/機 318
專題指導	4± 421 7-1	- 研究室與	51	15, clliou@	mail.mcut.edu.tw
老師姓名	蔡習訓	分機號碼	51	24 , <u>hhtsai@</u>	mail.mcut.edu.tw
	以 Solidworks 分析不同拘束條件:	鋼板受強迫打	長動	預定招收	
專題名稱	之位移及應力		<i>(13)</i>	學生人數	2
專題簡略構	l 想與內容(研究動機及研究方向)	:			
有別於E	诗效處理,以強迫振動方式消除鋼	材之殘留應	力是	一種加速消	除方式,將馬達加
裝偏心轉軸	,對鋼板進行不同旋轉頻率的強迫	振動,可以	加速	消除殘留應	力。為了瞭解不同
拘束條件,	其鋼板在強迫振動效應下的振動模	態差異,乃	以 S	olidworks 並	圭行模擬分析。
先分析会	鋼板在不同拘束條件下的自然頻率	,再以不同	振動	/頻率之強追	且振動施加在鋼板
上,獲得其	振動模態、位移及應力分佈,歸納	7得到結論。			
本專題規劃	之進度(時程)與目標〔是否參加校	き外比賽或申	請和	技部與一般	设產學研究計畫]:
113年09月	建模				
113年11月	自然頻率分析				
113 年 12 月	強迫振動分析				
114年01月	鋼板模態分析				
114年03月	實驗驗證				
114年04月	專題報告				
	之專長、特定能力或修過課程				
熟悉 solidwo	orks				
 備註:					
174 =					

	蔡習訓			枝	後 318
專題指導 老師姓名		研究室與 分機號碼	512	24 , hhtsai@	mail.mcut.edu.tw
老即姓名		一刀"成"炕"问			
專題名稱	離心式水泵葉片運轉時軸向推	主力之量測		預定招收學生人數	2
專題簡略構	想與內容 (研究動機及研究方向):				
在高效氣	能運算時,電腦主機之解熱至關重導	要,浸沒式	冷卻	以單相或多	相流體,以強迫對
流方式將熱	量帶離熱源,而強迫對流則必須以ス	k泵傳送流:	體建	立。離心式	水泵的傳輸效率優
異,其將流開	豐由入口送到出口,並對流體提供一	一定壓力及	速度	, 使流體具	-有動能而流動。離
心式水泵葉	片提供能量給流體,使得離心式水系	泵葉片前後	有壓	力差,此壓	力差會導致離心式
水泵葉片的草	铀心/軸承有反作用力,經時運轉後	, 其拘束負	會受3	目影響。本	專題擬以力量感測
器,對運轉	中的離心式水泵軸心進行力量量測	,藉以確認	軸心	:/軸承之拘	束妥適性,並提出
可能之設計	變更,達成本專題的貢獻。				
1. = = 10 +1	\ \\ \rightarrow \	山口 南 しわ	1+ 41	111.40.45 4	n + 约 - m - m - vl - + - \ .
	之進度(時程)與目標〔是否參加校》	外比賛或甲	請州	技部與一州	資産学研究計畫」・
113年10月					
	量測裝置製作				
	運轉線上量測				
	提出設計變更				
114年04月	完成專題報告				
リカロンエ	ᅩᆂᆮᆘᅭᄮᅡᄓᄱᄱᅭ				
	之專長、特定能力或修過課程				
糸上所開相	關 CAD 課程及格				
/比 ->- ·					
備註:					
1.5 446 4					
經 113 年)	月 日課程委員會審議通過				


	蔡習訓	1 121		核	₹ 318
專題指導 老師姓名		研究室與 分機號碼	512	24 , hhtsai@	mail.mcut.edu.tw
老即姓名		- 刀 /戏)近~河			
專題名稱	浸沒式解熱技術之建	立		預定招收 學生人數	2
專題簡略構	想與內容(研究動機及研究方向):				
在高效氣	能運算時,電腦主機之解熱至關重導	要,浸沒式沒	令卻	以單相或多	相流體,以強迫對
流方式將熱力	量帶離熱源,水泵傳送流體使冷卻液	该以強迫對 ;	流方	式將熱源的]熱量帶離,並至散
熱器以熱交打	與方式將冷卻液體中的熱量散發至?	空氣中。因;	機板	等熱源沉浸	在冷卻液體中,冷
卻液體的介質	電係數必須達致一定數值,冷卻液物	體之物性必	須先	,建立,再以	く ansys Fluent 針對
機殼邊界條何	件及物性進行設置,在不同熱源功益	率下,以不1	司的.	冷卻液體之	流動速度,分析獲
得熱源溫度的	的上升趨勢,並就散熱器空氣氣流运	速度對熱交	換效	率進行評估	, 並提出可能之設
計變更,達力	成本專題的貢獻。				
本專題規劃:	之進度(時程)與目標〔是否參加校	外比賽或申	請科	技部與一般	设產學研究計畫]:
113年10月	機殼設計				
113年12月	熱傳模擬建模				
114年01月	模擬分析				
	提出設計變更				
114年04月	完成專題報告				
此專題所需	之專長、特定能力或修過課程				
系上所開相	關 CAD 課程及格				
備註:					
لت 112 لت ا	口 口细妇子只人为兴口口				
經 113 年)	月 日課程委員會審議通過				

	仍心什仅八字傚做一任尔 113	于一尺寸	心衣 IP 叫 鱼 作	可必有
	陳明彦			206
專題指導	邱昱仁	研究室與		219
老師姓名		分機號碼.		
專題名稱	三軸並聯式機器人驅動與	具定位	預定招收學生人數	2~3 人
專題簡略構想	想與內容(研究動機及研究方向):			
動機:針對	封可模組化三軸並聯式機器人進行息 	驅動定位驗言	證	
主要內容				
	器人之運動學推導與程式驗證			
	動控制與資料擷取			
3. 路徑軌	弥規劃與驅動定位驗證			
本專題規劃之	之進度(時程)與目標〔是否參加校	外比賽或申	請科技部與一角	设產學研究計畫]:
藉由執行中	中研究計畫提供技術基礎與設備資源	原,協助支持	爰本專題課程,	預計 114 年 3 月以
前完成相關	氰進度。			
此專題所需之	之專長、特定能力或修過課程			
電動機控制	、機構學、Matlab (若不熟悉可藉山	七專題課程列	 來學習)	
備註:				
經 113 年 月	月 日課程委員會審議通過			

專題指導	陳明彦	研究室與	206 室 #5106		
老師姓名		分機號碼			
專題名稱	動力計自動對心系統開發		預定招收 學生人數	1~2 人	

專題簡略構想與內容 (研究動機及研究方向):

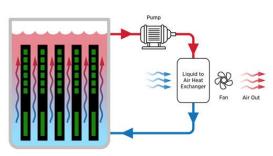
本專題搭配產學合作計畫的執行,將進行動力計自動對心系統的設計與製作。本專題將針對兩端軸心進行對正,透過位移感測器的精密量測,確認馬達軸心位置,同時透過演算法來提供移動平台的調整量。本專題以自動化系統之系統整合為主,除了撰寫演算法需有程式語言基礎之外,仍需具備機械繪圖與機構設計等能力。

可學習到的技能:

- 1. 3D 機械繪圖(CAD)與機構設計
- 2. 自動化系統設計與訊號處理
- 3. 專案管理、零件製作與系統組裝

本專題規劃之進度(時程)與目標〔是否參加校外比賽或申請科技部與一般產學研究計畫〕: 本專題依照下圖規畫之進度執行,並以產學合作計畫經費提供資源支援本專題課程,預計 114年4月以前完成相關進度。本自動化之創新演算法除了專題發表之外也預計將申請專 利。

此專題所需之專長、特定能力或修過課程 (若不熟悉可藉此專題課程來學習) 電腦輔助機械製圖、機構學、工程輔助分析、自動控制、計算機概論


備註:

選修本專題需兼任產學合作計畫之學習型助理

專題指導	陳明彦	研究室與	206 室 #5106		
老師姓名		分機號碼			
專題名稱	智能電池熱管理系統開發		預定招收 學生人數	1~2 人	

專題簡略構想與內容(研究動機及研究方向):

本專題將針對鋰電池(Li-Ion Battery)的散熱系統進行系統最佳化設計。鋰電池的散熱系統有許多種型態,本專題係以浸沒式冷卻的方式(Immersion cooling)將鋰電池浸泡在合適的冷卻液中,藉由冷卻液傳導至外部散熱器進行熱交換,如下圖所示。為了維持電池的溫度在操作的範圍內,本專題將以進階方法(如:人工智慧模型)控制風扇與幫浦進行整體系統效能的最佳化。主控制板預計以 Arduino 板卡為主,搭配 Matlab/Simulink 實現智能演算法。

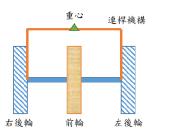
可學習到的技能:

- 1. 箱體設計與熱傳分析(CFD)
- 2. 控制理論與控制器設計
- 3. 專案管理與製作組裝

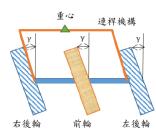
本專題規劃之進度(時程)與目標〔是否參加校外比賽或申請科技部與一般產學研究計畫〕: 本專題將依照下圖規劃之進度執行,預計114年4月以前完成相關進度,同時申請國科會 研究計畫。參與本專題將有機會參與國內外研討會進行論文發表。

此專題所需之專長、特定能力或修過課程 (若不熟悉可藉此專題課程來學習) 機力學、熱傳學、工程輔助分析、3D 列印、自動控制、Arduino、Matlab/Simulink

備註:


本專題將與外校研究室共同完成熱傳分析與實驗數據的擷取與分析

專題指導	陳明彦	研究室與	206 3	室 #5106
老師姓名		分機號碼		
專題名稱	電動三輪車設計		預定招收 學生人數	2~3 人


專題簡略構想與內容 (研究動機及研究方向):

本專題搭配國科會專題研究計畫的執行,將進行一台三輪電動車(前一後二)的設計與製作。本專題使用 CAD 軟體進行機構設計,進行 CAE 分析驗證,並完成製作與安裝。

車輛直行(前視圖)

可學習到的技能:

- 1. 3D 機械繪圖(CAD)與工程分析(CAE)
- 2. 創意機構設計
- 3. 專案管理與製作組裝

本專題規劃之進度(時程)與目標〔是否參加校外比賽或申請科技部與一般產學研究計畫〕: 本專題依照下圖規畫之進度執行,並以國科會計畫經費提供資源支援本專題課程,預計 114年4月以前完成相關進度。機構之創新設計除了專題發表之外也預計將申請專利。

此專題所需之專長、特定能力或修過課程

電腦輔助機械製圖、機構學、工程輔助分析(若不熟悉可藉此專題課程來學習)、設計思考

備註:

選修本專題需兼任研究計畫之學習型助理

	陳源林			4	5122
專題指導		研究室與			
老師姓名		分機號碼			
專題名稱	騎士安全衣			預定招收學生人數	3
專題簡略構想					<u> </u>
騎士安全	衣為在安全衣表面設置彩色 LED,	功能分為行	人核	其式與騎士相	莫式。
行人模式	:可以提供行人(尤其是年紀較長者)	發出警示分	と源」	以避免路上	其他車輛撞擊行
人事故。					
	:機車(自行車)騎士於道路行駛時,				
	由無線傳送信號至安全衣,安全衣 。當機車(自行車)騎士啟動左右轉方			_,	
	。虽饿平(日11平)嗣工成勤左石特人 全衣顯示大面積黃色左右方向光源!				
	带有可充電電池。	<u> </u>	1 -1- +n		EIL
	7,17,4 4,7 8 8 8 8 8				
上声坛四割	w. 4 点 (叶如) 物 口 珊 (日 丁 為 1	引用電子中	ᅶᆉᄭ	LL àn da 6	n 文 缀 ru m 上
本 等	之進度(時程)與目標〔是否參加校外	个比賽或甲	詴科	· 技部與一相	沒 <u>産</u> 学研究計畫」.
第一年—丰富	電路設計、程式測試				
第二年—系統					
預計參加盛郡	洋盃 HOLTEK 創意大賽				
山東野公康。	· 声目 - 杜户处与七均识细和				
此 等 翅 所 為 之	之專長、特定能力或修過課程 				
电/成电 」 ` -	学 明/1				
備註:					
經 112 年	月 日課程委員會審議通過				

2. 底盤動力計校正 3. 電動車循跡(防翻滾)研究		鄭榮和			創新大樓	211 室	3078
專題名稱 電動車循跡(防翻滾)研究 預定招收 學生人數 (2~4 人為 1 組) 專題簡略構想與內容 (研究動機及研究方向): 以智載中心現有的 FEV1 PoC 車型與測試設備進行以下之研究: 1. 電動車乘適性改善 2. 底盤動力計校正 3. 電動車循跡(防翻滾)研究 4. 電動車馬達測試與驗證 5. 電動車 EE-BUCK 測試 本專題規劃之進度(時程)與目標(是否參加校外比賽或申請科技部與一般產學研究計畫): 以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的變化。 積計參加 比賽	專題指導		研究室與				
專題名稱 電動車循跡(防翻滾)研究 學生人數 (2~4人為1組) 專題簡略構想與內容 (研究動機及研究方向): 以智載中心現有的 FEVI PoC 車型與測試設備進行以下之研究: 1. 電動車乘適性改善 2. 底盤動力計校正 3. 電動車循跡(防翻滾)研究 4. 電動車馬達測試與驗證 5. 電動車 EE-BUCK 測試 本專題規劃之進度(時程)與目標 (是否參加校外比賽或申請科技部與一般產學研究計畫): 以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的變化。 預計參加 比賽 此專題所需之專長、特定能力或修過課程	老師姓名		分機號碼				
專題名稱 電動車循跡(防翻滾)研究 學生人數 (2~4人為1組) 專題簡略構想與內容 (研究動機及研究方向): 以智載中心現有的 FEVI PoC 車型與測試設備進行以下之研究: 1. 電動車乘適性改善 2. 底盤動力計校正 3. 電動車循跡(防翻滾)研究 4. 電動車馬達測試與驗證 5. 電動車 EE-BUCK 測試 本專題規劃之進度(時程)與目標 (是否參加校外比賽或申請科技部與一般產學研究計畫): 以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的變化。 預計參加 比賽 此專題所需之專長、特定能力或修過課程							
專題簡略構想與內容 (研究動機及研究方向): 以智載中心現有的 FEV1 PoC 車型與測試設備進行以下之研究: 1. 電動車乘適性改善 2. 底盤動力計校正 3. 電動車循跡(防翻滾)研究 4. 電動車馬達測試與驗證 5. 電動車 EE-BUCK 測試 本專題規劃之進度(時程)與目標 [是否參加校外比賽或申請科技部與一般產學研究計畫]: 以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的變化。 預計參加 比賽 此專題所需之專長、特定能力或修過課程	東語 名稱	雷動車循跡(防翻滾)研	, ric		預定招收		
以智載中心現有的 FEV1 PoC 車型與測試設備進行以下之研究: 1. 電動車乘適性改善 2. 底盤動力計校正 3. 電動車循跡(防翻滾)研究 4. 電動車馬達測試與驗證 5. 電動車 EE-BUCK 測試 本專題規劃之進度(時程)與目標〔是否參加校外比賽或申請科技部與一般產學研究計畫〕: 以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的變化。 預計參加 比賽 此專題所需之專長、特定能力或修過課程	1 WM 111	电动干加机门加机厂	<i>7</i> u		學生人數	(2~4 <i>J</i>	為1組)
1. 電動車乘適性改善 2. 底盤動力計校正 3. 電動車循跡(防翻滾)研究 4. 電動車馬達測試與驗證 5. 電動車 EE-BUCK 測試 本專題規劃之進度(時程)與目標 〔是否參加校外比賽或申請科技部與一般產學研究計畫〕: 以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的變化。 預計參加 比賽 此專題所需之專長、特定能力或修過課程	專題簡略構想	想與內容 (研究動機及研究方向):					
 底盤動力計校正 電動車循跡(防翻滾)研究 電動車馬達測試與驗證 電動車 EE-BUCK 測試 本專題規劃之進度(時程)與目標〔是否參加校外比賽或申請科技部與一般產學研究計畫〕:以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的變化。 預計參加 此賽 此專題所需之專長、特定能力或修過課程 	以智載中心理	見有的 FEV1 PoC 車型與測試設備達	進行以下之	研究	:		
3. 電動車循跡(防翻滾)研究 4. 電動車馬達測試與驗證 5. 電動車 EE-BUCK 測試 本專題規劃之進度(時程)與目標 [是否參加校外比賽或申請科技部與一般產學研究計畫]: 以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的變化。 預計參加 比賽 此專題所需之專長、特定能力或修過課程	1. 電動車乘	適性改善					
4. 電動車馬達測試與驗證 5. 電動車 EE-BUCK 測試 本專題規劃之進度(時程)與目標 [是否參加校外比賽或申請科技部與一般產學研究計畫]: 以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的變化。 預計參加 比賽 此專題所需之專長、特定能力或修過課程	2. 底盤動力	計校正					
5. 電動車 EE-BUCK 測試 本專題規劃之進度(時程)與目標 [是否參加校外比賽或申請科技部與一般產學研究計畫]: 以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的變化。 預計參加 此賽	3. 電動車循	跡(防翻滾)研究					
本專題規劃之進度(時程)與目標 [是否參加校外比賽或申請科技部與一般產學研究計畫]: 以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的 變化。 預計參加 比賽	4. 電動車馬	達測試與驗證					
以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的變化。 預計參加 比賽 此專題所需之專長、特定能力或修過課程	5. 電動車 E	E-BUCK 測試					
以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的變化。 預計參加 比賽 此專題所需之專長、特定能力或修過課程							
以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的變化。 預計參加 比賽 此專題所需之專長、特定能力或修過課程							
以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的變化。 預計參加 比賽 此專題所需之專長、特定能力或修過課程							
以校區內或封閉測試場地進行路試,使用 IMU 測量行駛軌跡及車身擺動,比較變更前後的變化。 預計參加 比賽 此專題所需之專長、特定能力或修過課程	十 市 晒 桕 刺 。	2	以 儿 寉 七 由	生化	14 pt ch . 41	1文組加	加山井)・
變化。 預計參加 比賽 此專題所需之專長、特定能力或修過課程							, -
預計參加 比賽 此專題所需之專長、特定能力或修過課程	_	对闭测试场地连行烙试,使用 IIVIU	冽 里们 战事	儿此八	【半牙振助	,比較愛	[
此專題所需之專長、特定能力或修過課程	変化。						
此專題所需之專長、特定能力或修過課程							
此專題所需之專長、特定能力或修過課程							
此專題所需之專長、特定能力或修過課程	西山冬山	上 寉					
	1月 司 多加	让					
	山亩昭公西	· 車 E 、					
Carsim、13 Master、Simulink、早期助力学							
		Waster、Simumik、早辆切刀字					
供計・	供計・						
TH at •	備註:						
	1- 110 h	7					
經 113 年 月 日課程委員會審議通過	經 113 年)	· 日課程委員會審議通過					

		<u> </u>			
	張文慶			機 223	ext. 4564
專題指導		研究室與	Wiyicenangue		mail.mcut.edu.tw
老師姓名		分機號碼	FB: Wunching Lyle Chang / L		
				wlyl	lechang
			預	定招收	最多共6人
專題名稱	生活工程產品設計/研	發		學生人數	每一題目 1~3 人
			-,	1/ CX	學生組別不限

專題簡略構想與內容(研究動機及研究方向):

- 學生與指導老師討論後, 訂定欲開發之生活工程產品主題, 進行設計, 分析與製做等工作.
- 生活工程:工程原理應用於 吃/喝/玩/樂/拉/撒/睡/身/心/靈/美/生/老/病/死/···.
- 優先考量主題(但不限定於)之相關產品之設計/研發/工程分析:時尚精品,汽/機/自行車 改裝精品,任務載具(行動商店;祈福載具;…),運動,舞蹈,玩具,遊樂設施,寵物精品, 潮跑車設計,….
- 在指導老師輔導下學生學習做"學生自己的專題",而非成為指導老師之研究人力.
- 專題可考慮規劃由產業界提供產學合作人才培育獎學金.

本專題規劃之進度(時程)與目標 [是否參加校外比賽或申請科技部與一般產學研究計畫]:

專題成果若良好可,可考慮參加校外相關比賽.例如: IF, Red Dot, Good Design, IDEA,,輕 金屬創新應用設計競賽,...等.

此專題所需之專長、特定能力或修過課程

機械設計,系統整合,專業中/英文,CAD,CAE,靜力學,動力學,材料力學,機構學,機械材料,機械製造,及其它機械相關科系畢業生必備之相關核心原理(熱力學,流體力學,自動控制,…,等.)

備註:

僅適合符合下列所有條件之學生

- 1. 對機械工程(或車輛工程)及產品開發與設計具有超級高度真正興趣者
- 2. 願於畢業前積極養成個人具備足夠之機械工程(或車輛工程)專業知識與技能者
- 3. 具積極主動求知以充實專業能力之精神與行動者
- 4. 具自我要求責任感,正確時間管理態度者
- 5. 具合乎科學邏輯之思考能力者
- 6. 具正面思考心態者
- 7. 細心, 對數字精確有概念者
- 8. 中文流利(說/讀/聽/寫)且無溝通障礙者

具有效率蒐集並正確閱讀中 (英)文資料能力者

	章哲寰		213	, 5110
專題指導		研究室與		
老師姓名		分機號碼		
声 野 夕 採	金屬 3D 列印散熱器性能分析		預定招收	4
守咫石件	金屬 3D 外甲 敗然 益性 肥力 机		學生人數	(2~4 人為1組)
車 55 節 60 世 #	 烟囱内穴(瓜吹私撒及瓜吹卡台):			
· ·	思與內容(研究動機及研究方向):	ᅪᆿᄽᄼᆇᆇᇊ	는 #b #b 4b + 6b 1/2	体 壬二二乙列伯
	D製作散熱鰭片可進行散熱,而孔附 5.変命洗成型如如乙除如美男。本語			
	充率會造成內部的孔隙的差異。本 B A B A B A B A B A B A B A B A B A B A			
	用金屬 3D 列印製作不同孔隙的散熱 医测共器 // / // ***	、 點 斤 , 円 连	E 行買嶽州得出	个同孔原举下的熟
阻變化,亚] 	預測其變化趨勢。			
 		外比赛武申:		日
一个一个人人人儿里	之是及(·特征)共日孫(人日多加伐)	7 亿页以下	明 / l · · · · · · · · · · · · · · · · · ·	() () () () () () () () () () () () () (
77 1 A 1	u de			
預計參加	比賽			
	之專長、特定能力或修過課程			
電腦輔助機材	戒製圖			
備註:				
經 113 年)	月 日課程委員會審議通過			

					·· <u>·</u>	
	許啟彬		機 207			
專題指導 老師姓名		研究室與 分機號碼		5	5150	
老 師姓名		77 7成 30元4时				
專題名稱	十字韌帶重建手術的客製化導引 精確性驗證	工具設計與		預定招收學生人數	2-3 人 (2~4 人為 1 組)	

專題簡略構想與內容 (研究動機及研究方向):

現有十字韌帶重建手術定位或導引技術研究與現有產品非常稀少,且不難發現有許多臨床應用待改善的部分,以一般關節鏡韌帶重建手術定位方式而言,大多使用關節鏡中直接量測或 X 光定位,但不管是關節鏡或是 X 光,都是將三維空間中的位置轉為二維影像,以關節鏡量測來說,鏡頭本身就有魚眼效應,在邊緣容易產生影像變形,關節鏡術中量測又受制於軟組織的影響;而 X 光量測受病患肢體擺位的影響極大,也有可能增加輻射、感染的風險。新一代的客製化導引器械,對於成本的降低和提升手術中的便利性都有很大的幫助,但還是有部分缺失,包含國內技術尚未純熟、製作時間過長、這些都是本研究將要深入探討的部分。

綜合上述因素,加上近期轉譯醫學、客製化與 3D 列進技術應用之概念的盛行,本研究 將利用核磁共振掃描(MRI)建構病患個人的骨頭與韌帶模型,再以電腦輔助術前規劃,模擬 前十字韌帶合併前外側韌帶股骨隧道之情況,最後製作客製化的手術導引器械,達到縮短手 術時間、提升精確性與減少手術醫師學習曲線中的錯誤。

本專題規劃之進度(時程)與目標 [是否參加校外比賽或申請科技部與一般產學研究計畫]:

預計申請國科會鼓勵技專校院從事實務型研究專案計畫預計投稿台灣電腦輔助骨科手術的研討會論文並參加論文競賽

預計參加 比賽

此專題所需之專長、特定能力或修過課程

須修過電腦輔助設計, 積極好學, 有耐心, 具溝通協調能力與團隊合作精神

備註:

	明志科技大學機械工程系 113	學年度專	題製作計畫	構想書
	許啟彬		t	幾 207
專題指導		研究室與		5150
老師姓名		分機號碼		
專題名稱	】 3D 列印骨填充物製作與	公长	預定招收	3 人
· 予贬石祸	D 列中有英元彻表下共	· 21 471	學生人數	(2~4 人為 1 組)
專題簡略構想	想與內容(研究動機及研究方向):		<u> </u>	
研究統	計全球退化性膝關節炎的年齡層逐	年下降,而	且華人體型相對	對較小,甚至東方
女性的股骨剂	骨車溝相較於男性或是其他種族更	低淺,髕骨	更容易碰撞或偏	扁離 ,因此罹患單獨
觸股骨關節 3	炎或單獨骨軟骨脫落的局部磨損情:	況居多。輕	微的軟骨損傷耳	战脫落可以使用藥
物、增生療法	去或自體軟骨細胞植入治療,如果服	兌落磨損嚴]	重則必須進行手	-術。現有人工膝關
節置換手術	,需要大量切除骨頭或韌帶組織,即	中便使用單骨	果膝關節置還是	可能需要移除正常
的骨組織。客	客製化局部置換手術能大量保留自覺	體骨,微創_	且術後回復快,	但現有的客製化局
部置換植入物	物與器械在手術精確度上仍有不足	, 手術步驟	繁雜裝配不易	,術後的穩定度不
佳,研究統訂	計3年內鬆脫率約25%。			
綜合上	述因素,加上近期 轉譯醫學、客製	化與 3D 列3	集技術應用之 椤	t念的盛行 ,本研究
目的為透過产	商用型成本低的光固化設備並自行	研發調配的	磷酸鈣漿料,3	D列印製作骨填充
物,設計不同	司孔隙和多孔結構的樣品,進行力 尋	學分析,找:	出最合適的骨填	在樣式與結構,並
與長庚醫院主	進行細胞培養實驗,確認本研究的	骨填充物對	骨細胞生長的性	生能。
本專題規劃	之進度(時程)與目標〔是否參加校	外比賽或申	請科技部與一点	设產學研究計畫]:
預計申請校園	內啟動計畫與國科會專題計畫			
預計投稿生物	物力學學會舉辦的研討會論文並參	加論文競賽		
預計參加	比賽			
此專題所需之	之專長、特定能力或修過課程			
須修過電腦輔	輔助設計,或材料相關課程, 積極好	學, 有耐心,	具溝通協調能	力與團隊合作精神
備註:				

經 113 年 月

日課程委員會審議通過

1	明志科技大學機械工程系	113 學年度專品	題製作計畫構	基根書
	游孟潔			5113
專題指導	陳宏毅	研究室與	5	5108
老師姓名		分機號碼_		
專題名稱	壓鑄件表面瑕疵影像自動	辨識系統之優化	預定招收學生人數	3
專題簡略構然	想與內容(研究動機及研究方	向):		
	之目標為針對經電鍍後的金屬/轉向,進而觀察壓鑄件表面是	• • •		
對壓鑄件環緣	撓側面、正面及反面以網路攝	影機進行影像擷耳	反,從不同位置	、角度光源照射壓
	進行多面拍攝,運用影像辨識及		•	
壓鑄件是否為	為瑕疵品。目前系統已能進行特	物件六面的拍攝 ,	而系統是以單	一壓鑄件全面檢測
後來進行是否	否為良品或是瑕疵品,這樣的村	澰測效率較低。本	專題的研究方	向是以目前的系統
為基礎,嘗認	試進行系統優化及提高壓鑄件!	的辨識及檢測效為	率。	
本專題規劃之	之進度(時程)與目標〔是否參		 請科技部與一般	是產學研究計畫]:
[目標]				
金屬壓鈕	壽件表面檢測系統優化。			
預計申討	請大專生專題研究計畫。			
此專題所需之	之專長、特定能力或修過課程			
單晶片應用、	、3D 列印技術、基本電路、機	電整合控制、C#和	崔式語言、Soild	lWorks 軟體繪圖。
備註:				

	明心杆技入字機械工程系 113	字十尺子		事心 音
	游孟潔			
專題指導	陳宏毅	研究室與		
老師姓名	1. 人名 教	分機號碼		
			預定招收	
專題名稱	水中懸浮顆粒及時監測	系統	學生人數	(2~4 人為 1 組)
			于工八数	(2 176%) 1 (311)
	思與內容(研究動機及研究方向):			
	爭化水質的加藥量皆為人工目視決			
分析設備,這	透過及時的影像分析,量化水中顆粒	立狀態,來 終	维持水質。未來	,此系統可應用於
許多需要監測	則水質的場合,改善人工目視判讀:	差異性大的	問題。	
本專題規劃之	之進度(時程)與目標〔是否參加校	外比賽或申	請科技部與一角	设產學研究計畫]:
預計參加	全國技專校院學生實務專題製作競	连赛 比賽	F	
此專題所雲之				
	2寸代 內久配力(以下之)。 2式編寫、富有責任感			
7八八件以口 7	至八			
/比 - 上 ・				
備註:				
經 113 年)	月 日課程委員會審議通過			

	游孟潔	1 121		<u>- 11 - 1 - 2 17</u>		
專題指導	時 产 如	研究室與				
老師姓名	陳宏毅	分機號碼				
		<u> </u>		在户机儿	2	
專題名稱	粉末自動進料與回收系統			預定招收	3	5 1 (m)
				學生人數	(2~4 人為	马 1 組)
專題簡略構想	想與內容(研究動機及研究方向):					
先前開發	簽一套粉體磁性異物檢測系統,該系	系統能夠自事	動檢	則磁性異物	的位置,立	É拍攝瑕
疵特寫照。聶	是終,系統會計算並統計成品良率 復	後匯出結果	。然市	而,目前之	系統仍需要	要依賴人
工進行進料技	操作。本專題旨在開發出一組全自 重	动磁性異物	檢測	系統之機台	,設計自重	 边 半模
組、粉體回收	女模組及瑕疵挑揀模組。未來,此 系	总統可應用 力	於含	有磁性異物	的粉體製	造產業,
實現無人化技	操作,减少對人力的依賴。					
本專題規劃之			請科	技部與一般		計畫]:
						,
預計參加	全國技專校院學生實務專題製作競	賽				
此專題所需之	之專長、特定能力或修過課程					
電腦輔助機材	戒製圖、機構設計、程式編寫、富	有責任感				
備註:						
經 113 年)	月 日課程委員會審議通過					

J	明志科技大學機械工程系 113	學年度專	題集	设作計畫 構			
	游孟潔		5113(辦公室)				
專題指導 老師姓名	陳宏毅	研究室與 分機號碼	5132(303 實驗室)				
3		74 1/2 4/2					
專題名稱	陶瓷 3D 列印機之設計	列印機之設計製作		預定招收 學生人數	(2~4 人為 1 組)		
專題簡略構想	專題簡略構想與內容(研究動機及研究方向):						
	是將數位設計轉換為實體物品輸出						
•	列印技術的快速發展,應用材料從	· ·					
	高溫、高硬度及較佳的化學穩定性;	· ·					

與結構,3D 列印技術的快速發展,應用材料從塑膠、金屬等材料擴展至更多高性能材料。 陶瓷材料耐高溫、高硬度及較佳的化學穩定性,成為工業及醫療領域中的新興材料。但目前 市面上對陶瓷材料的 3D 列印技術相較稀少,陶瓷材料質地較脆且可塑性較差,高硬度與高 熔點特性在切割與磨削時加工不易,因此技術門檻相對較高,研究動機期望突破現有技術瓶 頸,開發出高效、低成本且易於操作的陶瓷 3D 列印機。

本專題規劃之進度(時程)與目標 [是否參加校外比賽或申請科技部與一般產學研究計畫]:

- 1. 核心概念:學習 3D 列印技術原理及特性。
- 2. 實作能力:學習實際操作 3D 列印機與保養、更換耗材。
- 3. 設計思考:腦力激盪,將天馬行空的想像化為現實。
- 4. 文件撰寫:學習將所做研究報告以文字方式表述。
- 5. 團隊合作:學習與組員相互配合、分工合作與溝通。
- 6. 問題解決:學習如何有效處理所遇困難。

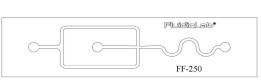
預計參加 萬潤 比賽或相關類型比賽

此專題所需之專長、特定能力或修過課程 3D 繪圖

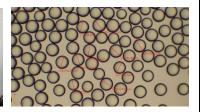
灶	22	•
偌	註	•

	游孟潔		~~ 从 「「 」	7 <i>1</i> 0 8
專題指導		研究室與		
老師姓名	1/1/2/ 42	分機號碼		
			預定招收	3
專題名稱	微型探針自動進退料與識別	裝置開發	學生人數	
市 胚 祭 咖 世	相始为党(西南东) 11 西南十人)。			
	想與內容(研究動機及研究方向): §一台用於微型探針自動拾取與排列	的色상凯供	,乘以人工批故	公士 中 收 独 刑 恢 社
	上方,不僅效率低下,且需耗費大量			
	身堆疊的微型探針足一擺放於加工製 在一下, 在四點係為四點條約何間的			
_ ,	竟下方,透過影像處理技術進行探針	的定位及分裂	類,便夾于能精	確夾起微型探針排
列於治具上ス		, , , m 14 wk.	- '芒 - '	+ - 1 16 17 1 19 -1
	然能長時間自動運作,不會因為一		而导致暫停,本	專題中將增加微型
	具數量,並進行控制,達到自動更換			
	七系統能廣泛應用於半導體產業來夾	取微型物體	,實現無人化操	作,减少對人工的
依賴。				
本專題規劃二	之進度(時程)與目標 [是否參加校	外比賽或甲	請科技部與一般	受產學研究計畫]:
預計參加	全國技專校院學生實務專題製作競	養		
此專題所需	之專長、特定能力或修過課程			
電腦輔助機材	戒設計製圖、機構設計、程式編寫	、 團隊合作	富有責任感	
備註:				
經 113 年	 月 日課程委員會審議通過			
, , , , , , , , , , , , , , , , , , ,	1 コートスパー田田内で			

	游孟潔	1 121		<u> </u>		
專題指導	r	研究室與				
老師姓名	陳宏毅	分機號碼				
專題名稱	織針排列機台的自動化進出#	4系統 開發		預定招收	3	
4 VOVD 117	(M) 10 1 1 1 30 10 2 11 1	1 3/ 19/01/11 3X		學生人數	(2~4 人為 1 組))
專題簡略構想						
	一台用於圓編針織機織針的自動化		ace 排	「列機台,」	七機台可針對不同	司
	進行排列,但由於目前此機台的進 擔					
計並製作自重	劲化的進出料系統,以達到整體機	台為自動化	設備	0		
十 市 晒 扫 割 」	>> , , , , , , , , , , , , , , , , , ,	ルー・エー・	连似	11 àn da . 41	1文段177 加山上 11	_
本等	之進度(時程)與目標〔是否參加校	外比賽或中	誀杆	拉印典一型	反	•
福計	全國技專校院學生實務專題製作競	注賽 比賽	₹			
1只可多加	主凶权可权几十工员切守巡衣计加	1月 10月	-			
此專題所需之	之專長、特定能力或修過課程					
	電腦輔助製圖					
備註:						
經 113 年 月	月 日課程委員會審議通過					
<u> </u>						

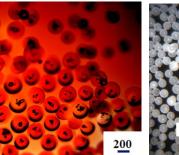

	胡志中			F	3211
專題指導		研究室與			
老師姓名		分機號碼			
t- 44				預定招收	3
專題名稱	眼眶受衝擊壓力動態分	个析		學生人數	(2~4 人為 1 組)
專題簡略構想	思與內容(研究動機及研究方向):		ļ		
近年來有棒球	求選手眼眶遭受棒球撞擊而受傷。	本專題運用	有限	單元分析方	万法(FEM,Finite
	眼眶受衝擊壓力分析,期能運用3				
單元分析的約	吉果。				
本專題規劃之	之進度 (時程)與目標 [是否參加	校外比賽或	申請	科技部與一	一般產學研究計
畫〕:					
預計參加	比賽				
此專題所需之	之專長、特定能力或修過課程				
/ + -> •					
備註:					
 	3 口理积禾吕合宏镁沼温				
經113 年 月	月 日課程委員會審議通過				

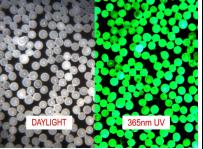
	为心 <u>什</u> 权人子被概工在示 113	十十尺寸	·	
+ 11 14	胡志中		ŀ	3211
專題指導		研究室與		
老師姓名		分機號碼 -		
		1		
專題名稱	軸心磨耗測試機		預定招收	3
4 20 41	14 - 16 4 CM EVINA		學生人數	(2~4 人為 1 組)
專題簡略構想				
軸心因長時間	『運轉會產生磨耗。本專題運用自	動化機構設調	計與3D列印技術	析,製作軸心磨耗
測試機,測記	式軸心因長時間運轉會產生磨耗的	結果。		
本專題規劃之	之進度 (時程) 與目標 〔 是否參加;	校外比賽或「	申請科技部與一	-般產學研究計
畫〕:				
預計參加	比賽			
此專題所需之	之專長、特定能力或修過課程			
備註:				
經 113 年 月				
<u> </u>				


專題指導 老師姓名	朱承軒	研究室與-		5123		
	鄭春德		光至兴	5117		
	洪國永	刀作	或 <i>加</i> " 向	5118		
声跖夕较		應用機械加工於微流體晶片製造並產		預定招收學生人數		2組共
專題名稱	出高分子微球技術之探討(I)、(I	I) 預足		招权学生八数	4~8 人	

專題簡略構想與內容 (研究動機及研究方向):

微流道技術及微流道流量控制是近年來發展迅速的研究領域,微流道技術能夠實現對微量多相流體的精准操控,可應用在化學分析、先進生醫材料合成、蛋白質結晶、單細胞培育以及檢測等領域。除此之外,微流道在生醫微球製作也有廣泛的應用潛力。本專題計畫將進行微流道的設計與製作,利用微加工技術製作微流體通道,再結合微針頭與幫浦系統控制分散相與連續相的流速製作微球,微球結合感測材料可進行相關的生醫檢測應用;結合玻尿酸或其他生醫材料,可進行相關生醫領域的應用。本技術可以廣泛應用在生醫感測與應用領域。我們認為此創新構想可以帶動更多人投入此新架構應用上的開發與研究,不論是學術上與產業上都有相當之發展潛力。


微生態 超能修護乳液



醫美診所共同參與開發

保養品應用藥物載體應用

生醫檢測應用

本專題規劃之進度(時程)與目標〔是否參加校外比賽或申請科技部與一般產學研究計畫〕: 1.微流道系統設計、製作與應用資料蒐集 2.微流道系統製程測試 3.高分子材料製程測試 4. 數據分析 5.報告撰寫

此專題所需之專長、特定能力或修過課程

1.無須特定專長、能力或修過相關課程 2.能自動自發從事實驗 3.對微流道系統設計、加工製程技術與應用有興趣者且刻苦耐勞者

備註:

	蔡宜昌		機 204			
專題指導		研究室與	5104		5104	
老師姓名		分機號碼				
				>- ! >-		
專題名稱	機電整合實務			預定招收 學生人數	3 人 (2~4 人為 1 組)	
声 55 50 34 4	田内中(田中利山口中十二)。			1 1/100	(= 1,7€,70 1 (32)	
寺越間略構作	想與內容(研究動機及研究方向):					
	各種應用。本專題擬藉由血管血液與	具肌肉組織	散發	紅外光之不	同,製作一血管位	
置偵測器,故	岛助菜鳥護士打針。					
上声既归割	1. 4 ch / ch ch / ch ch / ch / ch / ch / c	11年上中	ᆂᅦ	LL to the se	n 文 缀 zn 加山 事)。	
本 等 翅 税 劃 之	之進度(時程)與目標〔是否參加校外	个比賽或甲	詴杆	技部與一般	文産学研究計畫」・	
預計參加	比賽					
此專題所需認						
<u></u>						
經 113 年 月	月 日課程委員會審議通過					

	蔡宜昌		機 204			
專題指導		研究室與		5104		
老師姓名		分機號碼.				
			T	1		
專題名稱	優化龍捲風產生器製	作		預定招收	3 人	
4 10 111	及旧能地叫在工品农	17		學生人數	(2~4 人為	1 組)
專題簡略構想	思與內容 (研究動機及研究方向):		ı			
eta — a shil sa			٠ - د	1 	Mr. 11 h	
	完成一攏捲風產生器,但其外觀、力 式其實用效果。	、小皆未如 為	恵。る	本 專題擬優	化龍捲風產	生器之
政 / 业 / 四	式 去 員用效本。					
本專題規劃之	之進度(時程)與目標〔是否參加校	外比賽或申	請科	技部與一般	是產學研究計	·畫〕:
預計參加	比賽					
1月可 多加	心 實					
此專題所需之	· 之專長、特定能力或修過課程					
備註:						
1/14 1/200						
經 113 年 月	月 日課程委員會審議通過					